EFMA 2024 Plenary Panel on "Financial Big Data and Technology"

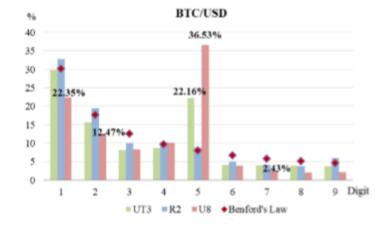
Web3 Big Data & Inclusion and Democratization Through Web3 and DeFi? Initial Evidence from the Ethereum Ecosystem

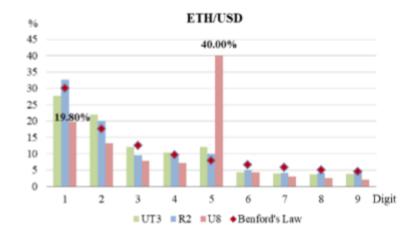
Lin William Cong

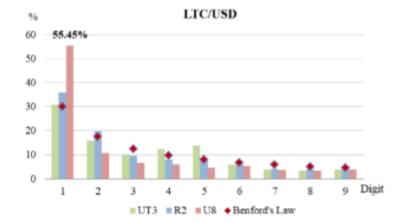
@Cornell University SC Johnson College of Business, IC3, and NBER

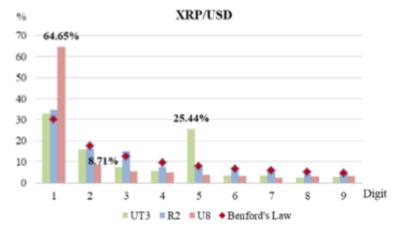
Ke Tang

@Institute of Economics, School of Social Science, Tsinghua University Yanxin Wang & Xi Zhao


@School of Management, Xi'an Jiaotong University


Crypto Wash Trading


Traders fabricating trades and acting as the transaction counterparty on both sides:



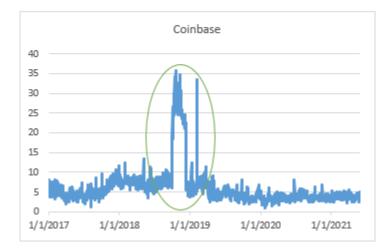
Distribution of First Significant Digits

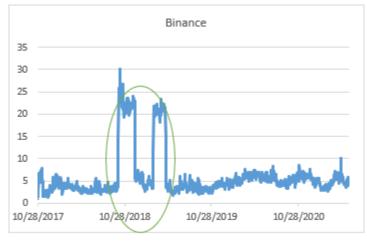


Rounding & Clustering

Unregulated tier-2 exchanges: U14

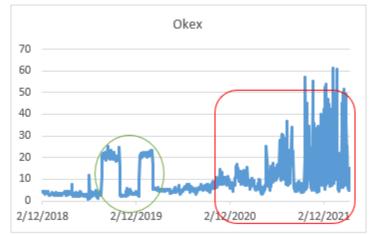
Quantifying Wash Trading


UT10


94.31%

Round to unrounded trades ratio and regulated/traditional exchanges as benchmark.


	Wash Volume Percentage		Panel B Unregulated Tier-2 Exch		
	Average	Standard Deviation	Uı	99.99%	
Unregulated exchanges	69.72%	29.71%	U2	98.30%	
Unregulated Tier-1 exchanges	52.52%	29.41%	U ₃	72.72%	
Unregulated Tier-2 exchanges	80.48%	25.13%	U4	95.50%	
			U5	89.71%	
			U6	98.13%	
	Wash Volume		U7	77.20%	
Exchange Code	Percer		U8	77.09%	
Panel A Unregulate		2	وU	81.12%	
UT1	51.7	-	U10	98.45%	
UT2	51.7		U11	21.48%	
UT ₃	1.12	-	U12	98.08%	
UT4	92.6		U13	65.42%	
UT ₅	44.87%		U14	96.78%	
UT6	66.		U15	94.36%	
UT ₇	18.95%		U16	23.27%	
UT8	66.1				
UTg	37.4				
.	2/14				


Tax-Loss Harvesting Evidence: BTC↓

Exogenous Wash Trade ≈ Tax-Loss Harvesting

Endogenous Wash Trade ≈ Volume Inflation

Estimated Tax-Loss Harvesting Revenue

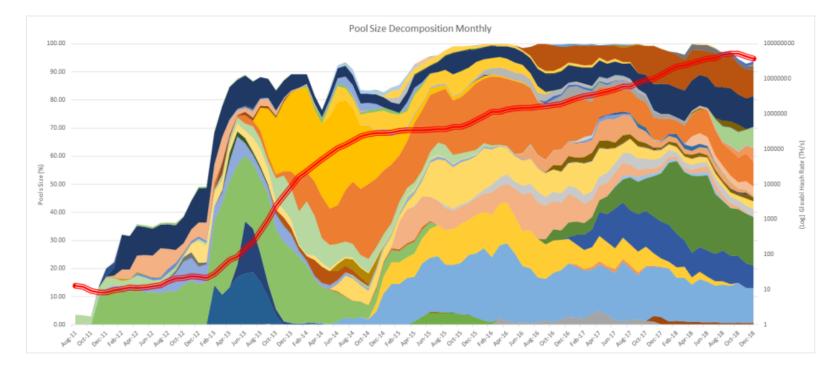
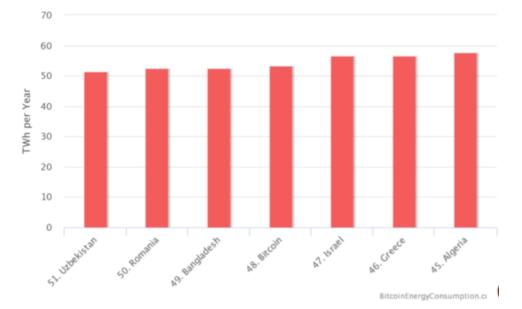

	Panel A - Tay	x-Loss I	Iarve	sting Estim	ates		
-	Volume-Wei	ghted	Equ	ually-Weigh	ted		
		egular 4.25		vest Reg .34 5.3	ular 24		
Exchanges	Panel B - Est <mark>P</mark> air	020270		s to the Go -Weighted	1	t ly-Weighted	
All	BTC-USD	1924 1996	ash 52	Revenue	Wash 20.80	Revenue	
	BTC-USD BTC-USD	T 25				Revenue 4.37 3.31	
All Regulated All		T 25. T 19	.52	5.36	20.80	4.37	

Table 7. Estimating the Size of Revenue Loss from Tax-Loss Harvesting. Estimating the Size of Revenue Loss from Tax-Loss Harvesting. This table reports estimates of tax revenue loss arising from tax-loss harvesting in 2018. Panel A reports volume-weighted and equally-weighted estimates of the percentage of trades that are wash trades during tax-harvesting regular periods. Panel B reports the estimated wash volume and revenue loss to the government (in billions). All variables are reported at the regulated-exchanges level. See section 5.2 for computational details.

In 2018, federal capital gains tax revenue was \$158.4 billion

-> Potential: Increase of about 5-10% tax revenue [only BTC].

Decentralized Mining in Centralized Pools (Cong, Li, and He, 2021)


- Pool dominance coincides with explosive growth in hash power.
- Pools grow but no long-term over-concentration.

Decentralized Mining in Centralized Pools

- Risk-aversion → pooling: significant risk-sharing benefits.
- Rise of pools not accompanied by over-concentration.
 - Diversification as a counter-centralization force.
 - IO force: larger pools charge higher fees and grow slower.
- Ø Financial innovation that potentially reduces welfare.
 - Risk-sharing drastically aggravates mining arms race and multiplies egregious energy use.

Vertical Integration and Mining Pools

- 1. Vertically integrated entities (e.g., exchanges such as FTX).
- 2. Liability run and asset spiral.
- 3. Mining Concentration and environmental damages:
 - Consensus protocol relies on adequate decentralization for security (e.g., 51% attack, selfish mining, etc.
 - Technological possibility or economic reality?
 - Pooled mining with enormous energy consumption.

Energy Consumption by Country Chart

An Anatomy of Crypto-Enabled Cybercrimes (Cong, Harvey, Rabetti, and Zong, 2022)

- Aggregate users to learn group interactions (network analysis).
- *Trace specific transactions (e.g., ransom payments);*
- Learn the economics of a group of users (.e.g, cybercrime);
- Infer an economic activity from transaction's patterns (e.g., tax evasion);
- Combine with other data sets to provide perspectives on crypto adoption and usage (e.g., financial inclusion).

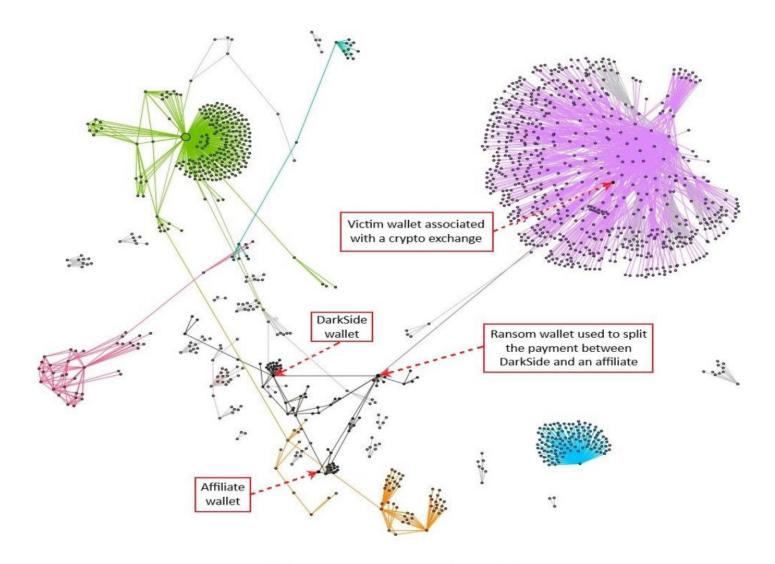


Figure 5: A Ransomware Gang's (DarkSide) Network Analysis

Blockchain Forensics and the Dark Side of Crypto

Cornell University

Ransomware

- Ransomware refers to a cyberattack in which criminals use malware to encrypt all of the files on the victim's device or network, making them inaccessible;
- The attacker will then demand a payment, nowadays always in digital currencies, in exchange for a decryption key needed to regain access to the files; multiple layers of extortion
- Ransomware attacks can render victim organizations virtually inoperable, and attackers often target critical infrastructure organizations including banks, energy providers, hospitals, schools, and municipal governments.
- Organized crimes and underreporting.

PRESS RELEASES

Treasury Sanctions Evil Corp, the Russia-Based Cybercriminal Group Behind Dridex Malware

December 5, 2019

Washington – Today the U.S. Treasury Department's Office of Foreign Assets Control (OFAC) took action against Evil Corp, the Russia-based cybercriminal organization responsible for the development and distribution of the Dridex malware. Evil Corp has used the Dridex malware to infect computers and harvest login credentials from hundreds of banks and financial institutions in over 40 countries, causing more than \$100 million in theft. This malicious software has caused millions of dollars of damage to U.S. and international financial institutions and their customers. Concurrent with OFAC's

Rebranding Strategy

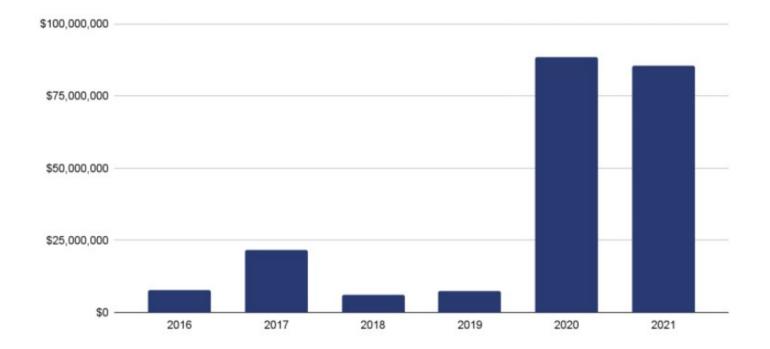


Fig. 1.8 Ransomware payment rule to strains associated with Evil Corp, 2016-2021.

Blockchain Forensics and the Dark Side of Crypto

Cornell University

Overview:

Financial inclusion and democratization through Web3 and DeFi?

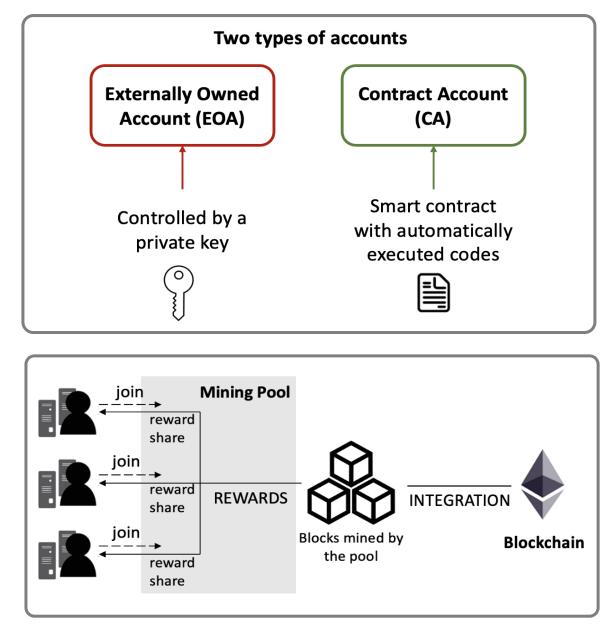
"A Fundamental New Approach to corporate governance, value creation and stakeholder participation with pari passu interests." (WEF)

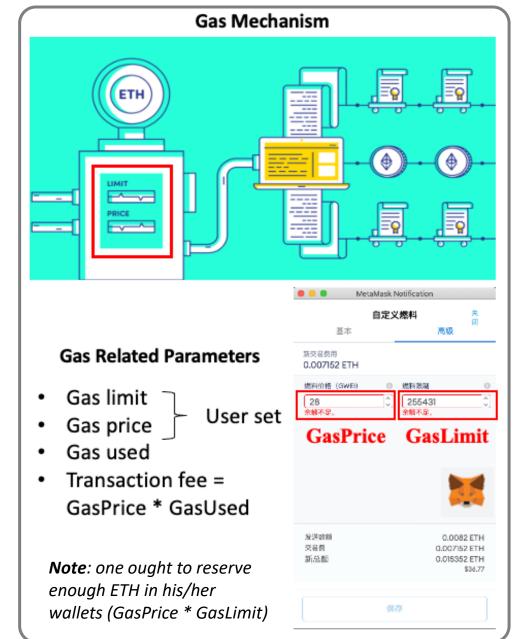
Functional Efficient Fair Affordable

- Description of Ethereum Ecosystem using Big Data
 - Network Structure & General Trends/Stylized Pattern
 - Distributions of Mining Income, Onchain Wealth, and Utilization
 - Data sharing and visualization portal
- Transaction Fees and Financial Inclusion/Democratization
 - Percentage Transaction Fee; Network Congestion and Gas Price; Fee and Extra Gas Fee Reserved; Transaction Failures; Token Exchange Rate Volatility
- Inclusion and Democratization Through Redistributive "Monetary" Policy (fee mechanism changes and programs e.g. ,airdrops).

Literature

• Transaction fees in distributed networks:

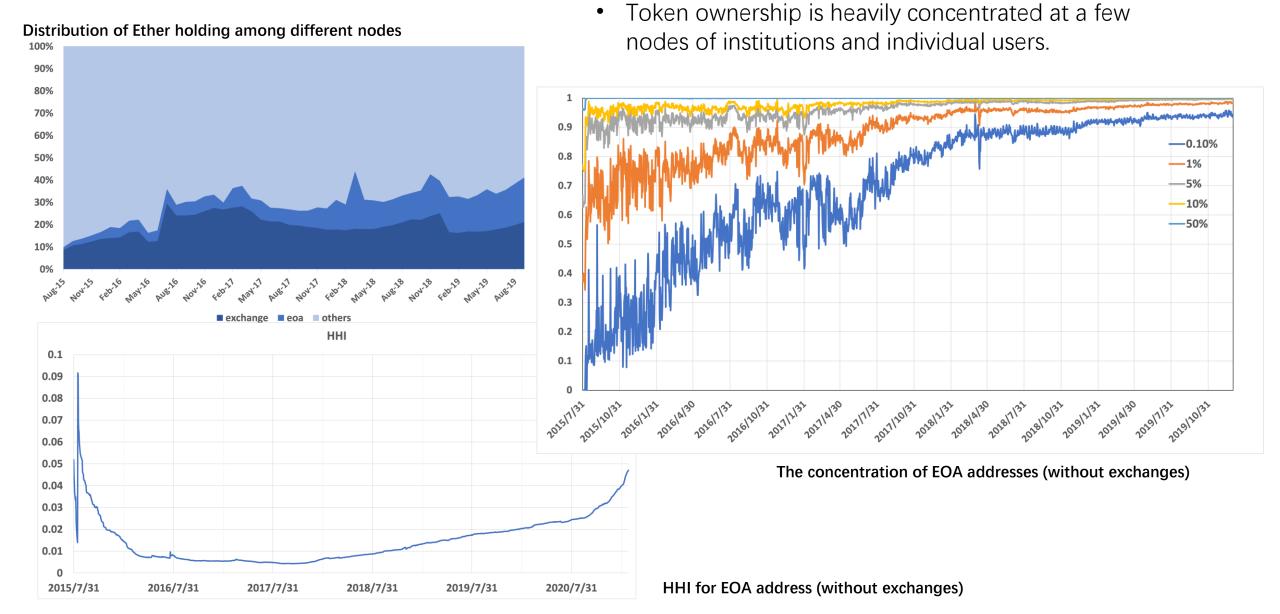

- Analyzing transaction fee and relating it to congestion and system stability: Easley, O'Hara and Basu (2019) and Huberman, Leshno and Moallemi (2021).
- Transaction fee design: SPA, Basu et al. (2019), **EIP-1559** (Roughgarden, 2020b; Reijsbergen et al., 2021; Liu et al., 2022).
- Fees on Dex: John, Rivera, and Saleh (2022); Capponi, Jia, and Yu (2022).
- DeFi and Web3:
 - Future of finance? Harvey, Ramachandran and Santoro (2020).
 - **DeFi applications** such as Decentralized Exchanges and automated market-making (Lehar and Parlour, 2021; Capponi and Jia, 2021; Park, 2021; Augustin, Chen-Zhang and Shin, 2022) or lending (Markovich, 2021; Lehar, Parlour and Berkeley, 2022).
 - **Blockchain ecosystem** (e.g., Cong, He and Li, 2018; Rosu and Saleh, 2021; Makarov and Schoar, 2022; Zhang, Ma, and Liu, 2022).
- Digitization, transaction costs, and financial inclusion:
 - Philippon (2016); Jack and Suri (2014); Bachas et al. (2018).


Big Data and Big Computation

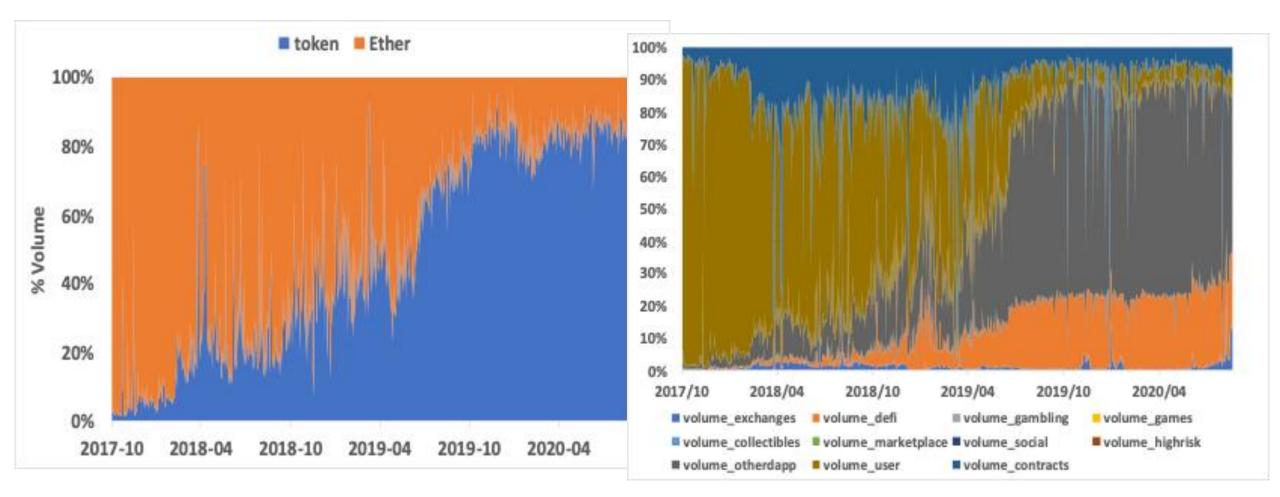
- Ethereum blockchain
 - Aug 15-Feb 22; 14 million blocks, 1.7+4.6 billion transactions, 1 billion transfers, 433 DeFi, 5047 Dapps, etc.;
 - Value of tokens transferred, the time when transaction bundled into the block, gas used, gas price and gas limit (set by the initiator), status of transaction.
- Block information (e.g., address of block verifier, mining pool, block number, etc.)
- Addresses associated with DeFi/ DApps
 - DApp Radar, DApponline, and Etherscan
 - Classified into 9 groups: exchanges, DeFi, gambling, games, collectibles, etc.
 - 166 DeFi protocols, 2,820 DApps.
- ETH Gas Station, CoinMarketCap, Google Trends
 - Recommended gas prices, etc.
 - Token prices, popularity metrics, etc.
- Large-scale computation: 14 servers dual Xeon E5, 128G Mem, 48TB hard disks,

1. The Ethereum Ecosystem

Ethereum Ecosystem (exchanges and DeFi dominates)



Description of Ethereum Ecosystem—*Distribution of Mining Income*



Description of Ethereum Ecosystem—Distribution of On-Chain Token Ownership

Description of Ethereum Ecosystem—*Distribution of Transactions*

- Shift from peer-to-peer interactions to user interactions with Dapps and DeFi protocols.
- Significantly more transactions by large players.

2. Inclusion and Democratization? A Transaction Fee Perspective

Fundamentally about technology and fee design, not IO and market power.

Transaction Fees and Undemocratic and Exclusive Usage—*Percentage Transaction Fee*

 $PercentageTransactionFee = \frac{GasPrice*GasUsed}{Value} \times 100\%$

• The percentage transaction fee for small amount transactions using DeFi is too high and volatile for inclusive finance.

Table 2—:	Percentage	Transaction	Fee	(continued)

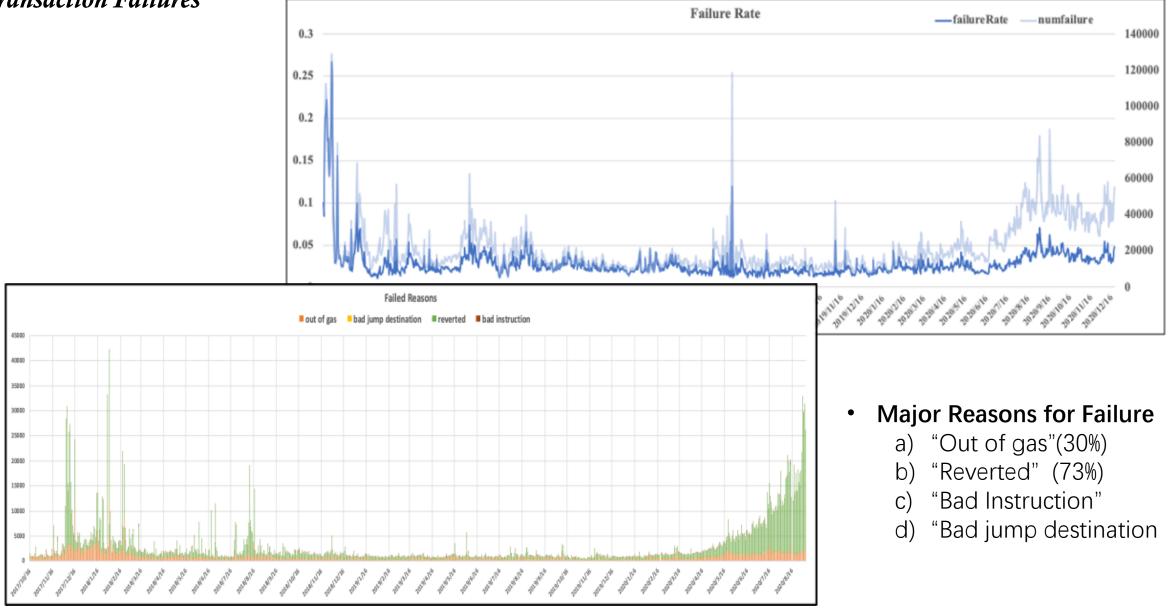
	F	Percentage transaction fee of transactions with Ether					Percentage transaction fee of transactions with tokens					
value	mean	median	25%	75%	standard	count	mean	median	25%	75%	standard	count
(\$)	(%)	(%)	(%)	(%)	deviation	n	(%)	(%)	(%)	(%)	deviation	count
0-0.01	2.05*1016	1549.53	121.75	6.4*104	3.38*1015	1,802,606	6.56*1031	15757.34	2108.71	8.68*105	3.16*1032	1,020,664
0.01-0.1	150.45	37.82	21.00	70.00	39.14	10,828,833	863.32	239.92	87.87	384.17	37.96	3,096,112
0.1-1	31.54	16.80	7.19	32.38	6.49	33,110,009	96.47	29.41	9.86	76.24	8.43	5,838,297
0-1	8.07*1014	21.00	10.11	44.10	6.73*1014	45,741,448	6.68*1030	69.84	18.11	287.03	1.01*1032	9,955,073
1-10	7.81	2.11	0.42	8.75	7.60	53,548,484	17.88	4.15	1.42	11.45	2.54	10,608,388
10-100	1.24	0.15	0.04	0.64	2.01	109,237,500	2.53	0.58	0.21	1.67	0.19	23,077,554
100-1000	0.18	0.04	0.01	0.13	2.19	78,726,642	0.36	0.09	0.03	0.26	0.01	43,924,023
1000-	0.02	0.00	0.00	0.01	0.03	52,759,079	0.05	0.01	0.00	0.03	0.00	38,500,612
1-	1.93	0.08	0.02	0.53	3.65	294,271,705	2.29	0.08	0.01	0.51	0.78	116,110,577
General	1.09*1014	0.13	0.02	1.84	2.47*1014	340,013,153	5.29*1029	0.11	0.02	0.91	2.84*1031	126,065,650

(c) Ether and Tokens on Ethereum

Determinants of Extra Gas Reserved

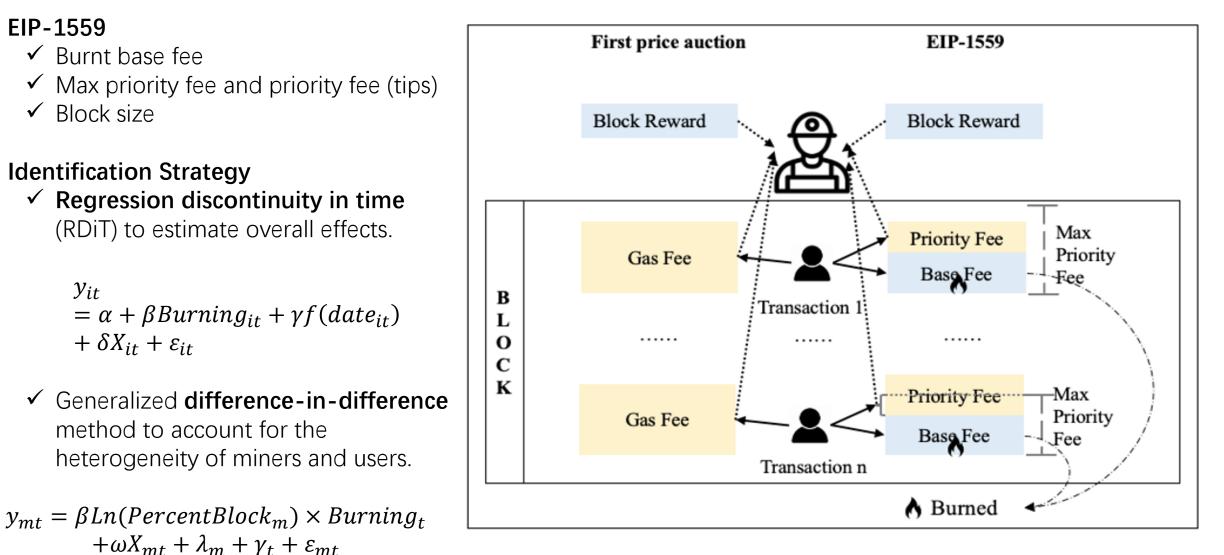
Linking Transaction Fee to Network Utilization, Gas Fees, and Extra Gas Fee Reserved

- Significant negative relationship between gas price • and delay time.
- Increases in gas price, transaction value, and ٠ network congestion all predicts increases extra gas reserve.


ExtraGasFee (\$)

GasFee (\$)

1% increase of network utilization predicts in an ٠ additional 3.43% gas price for all transactions

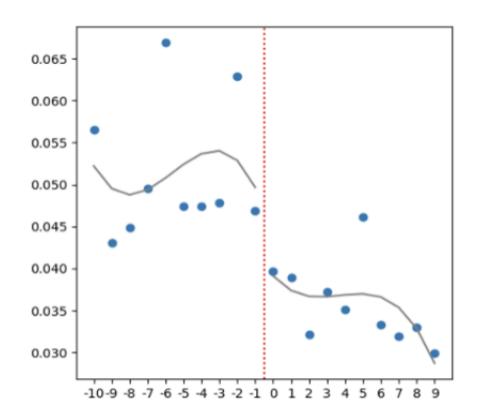

ans	saction F	ee to Netwo	ork Utiliz	ation,						
nd	'Extra G	as Fee Res	erved	Ln(ExtraGasReserved)	All					
	0	e relationsh	ip betwee	L.Ln(NetworkUtilization)	0.409*** 0.002					
ldy	time.				L.EthReturn	-0.695***				
ses	in gas pri	ice, transac	tion value	e, and			0.003			
ſk c	ongestio	n all predic	ts increas	es extra g	jas	L.ln(MedianGasPrice)	0.048***			
).						L.ln(BlockRewards)	0.000 -0.990***			
	e of netw	vork utilizat	ion nredi	cts in an		E.m(Dioekkewards)	0.001			
		is price for	•			L.ln(EthPopularity)	-0.076***			
	C						0.000			
(a) How M	uch Users N	Need to R	eserve in	the Wallets	Obs.	753,191,813			
					standard	AIC	4.622*10 ⁹			
	mean median 25		25%	5% 75% deviatio		Null Deviance	$2.043*10^{10}$			
5)	5.455	0.077	0.00	1.559	37.049	753,191,813				
4.075 0.434 0.068 2.701 135.535						753,191,813				

Transaction Failures

3. Inclusion/Democratization: EIP 1559 and Airdropping as Monetary Redistribution Policies

The EIP-1559 Fee Mechanism—*Background and Identification Strategy*

EIP-1559 Fee Mechanism


Redistributive Effect of EIP-1559—*Miner Side*

- **Overall negative effect** on miners' mining rewards.
- Weekly rewards for miners belong to larger mining pools decreased less.
- Weekly rewards for miners with higher computation power decreased more.

	M	ain	Exclude	e a week	Exclude two weeks		
LnRewards	(1)	(2)	(3)	(4)	(5)	(6)	
	10 weeks	20 weeks	10 weeks	20 weeks	10 weeks	20 weeks	
Burning	-0.007***	-0.008***	-0.007***	-0.006***	-0.008***	-0.002***	
	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)	(0.000)	
Observations	2,709,380	5,418,760	2,438,442	5,147,822	2,167,504	4,876,884	
R-squared	0.020	0.058	0.022	0.060	0.019	0.062	
Number of miners	135,469	135,469	135,469	135,469	135,469	135,469	
Controls	YES	YES	YES	YES	YES	YES	
Miners FE	YES	YES	YES	YES	YES	YES	
Month FE	NO	NO	NO	NO	NO	NO	

Overall Effects of EIP1559 on Mining Rewards

Robust standard errors in parentheses *** p<0.001, ** p<0.01, * p<0.05

Redistributive Effect of EIP-1559—*Miner Side*

(a) The Log of Weekly Mining Rewards

	(1)	(2)	(3)	(4)
VARIABLES	20 weeks	20 weeks	10 weeks	10 weeks
LnPercentBlocks*Burning	0.056***		0.010***	
	(0.004)		(0.002)	
LnBeforeRewards*Burning		-0.068***		-0.029***
		(0.001)		(0.001)
LnMiners	0.009***	0.008***	0.017***	0.016***
	(0.001)	(0.001)	(0.001)	(0.001)
LnGasprice	0.013***	0.013***	0.008***	0.008***
	(0.000)	(0.000)	(0.000)	(0.000)
LnDeviantGasprice	0.001***	0.001***	0.000***	0.000***
	(0.000)	(0.000)	(0.000)	(0.000)
LnEtherprice	0.005***	0.004***	-0.009***	-0.011***
	(0.001)	(0.001)	(0.001)	(0.001)
LnDifficulty	-0.091***	-0.093***	-0.028***	-0.030***
	(0.001)	(0.001)	(0.002)	(0.002)
LnCongestion	0.015***	0.017***	0.085***	0.090***
	(0.002)	(0.002)	(0.004)	(0.004)
Observations	5,418,760	5,418,760	2,709,380	2,709,380
R-squared	0.080	0.185	0.030	0.065
Number of miners	135,469	135,469	135,469	135,469
Miners FE	YES	YES	YES	YES
Month FE	YES	YES	YES	YES

Robust standard errors in parentheses *** p<0.001, ** p<0.01, * p<0.05

Heterogenous Effects of EIP1559 on Mining Rewards

Redistributive Effect of EIP-1559—User Side

- Overall **positive effect** on transaction volume and no. of Dapps used.
- Significant negative coefficients of interaction terms: Users with **lower transaction frequency** or **less ETH balance benefit more.**

	М	lain	Exclude	e a week	Exclude two weeks		
LnVolume	(1)	(2)	(3)	(4)	(5)	(6)	
	10 weeks	20 weeks	10 weeks	20 weeks	10 weeks	20 weeks	
Burning	0.002***	0.003***	0.003***	0.004***	0.005***	0.006***	
	(0.000)	(0.000)	(0.001)	(0.000)	(0.001)	(0.001)	
Observations	5,045,800	10,091,600	4,541,220	9,587,020	4,036,640	9,082,440	
R-squared	0.000	0.002	0.000	0.002	0.000	0.002	
Number of users	252,290	252,290	252,290	252,290	252,290	252,290	
Controls	YES	YES	YES	YES	YES	YES	
Miners FE	YES	YES	YES	YES	YES	YES	
Month FE	NO	NO	NO	NO	NO	NO	

(a) Weekly Transaction Volume

Robust standard errors in parentheses *** p<0.001, ** p<0.01, * p<0.05

Inclusion and Democracy Through Airdropping (+ Impact on ETH Price)

- Background
 - OmesiGo: First large-scale airdrop on Ethereum, Sept 13-23, 2017.
 - Airdropping OMG to addresses with Ether balance > 0.1 ETH at block height 3988888.
- Identification Strategy:
 - DiD with RD sample.
 - SCM (synthetic ETH).

$$y_{it} = \beta(After_{it} \times Airdrop_i) + \omega X_{it} + \lambda_i + \gamma_t + \varepsilon_{it}$$

The Impact of Airdrop on Users' Weekly Transaction Volume

		,			(1)	(2)	(3)	(4)	(5)	(6)
				VARIABLES	bandwidth 0.015	bandwidth 0.015	bandwidth 0.01	bandwidth 0.01	bandwidth 0.005	bandwidth 0.005
		-	•- treat	after_airdrop	0.038***	0.035***	0.037***	0.033***	0.038***	0.034***
	1	_	→ control		(0.005)	(0.005)	(0.005)	(0.005)	(0.006)	(0.006)
0.20 -				after	-0.101***		-0.102***		-0.097***	
	Ì				(0.002)		(0.002)		(0.002)	
e 0.15 -			Observations	880,771	880,771	760,608	760,608	585,100	585,100	
ə 0.15 - unlov u				R-squared	0.010	0.013	0.011	0.013	0.011	0.013
드 ['] 0.10 -				Number of miner_id	36,700	36,700	31,693	31,693	24,380	24,380
0.10			4	Controls	NO	YES	NO	YES	NO	YES
	V			Weighted	YES	YES	YES	YES	YES	YES
0.05 -				Miners FE	YES	YES	YES	YES	YES	YES
l				Month FE	NO	YES	NO	YES	NO	YES
	–10 –5 (week	5id	10	Robust standard errors in par	entheses					

*** p<0.001, ** p<0.01, * p<0.05

Conclusions

- Web3 and DeFi widely advocated as innovations for greater inclusion and democratization.
- First comprehensive description (utilizing big data) of the Ethereum ecosystem including its network structure, trends, and distributions of mining, ownership, and transactions.
- Fee mechanisms are not conducive to inclusion and democratization due to discrimination against small/pool players, high failure rate, etc.
- Protocols changes and programs such as base fee burning (EIP 1559) and airdropping represents redistributive "monetary" policies and can improve financial inclusion and democratization.
- Source of information and initial benchmark; future research needed.